1. What is the x-coordinate of the point of intersection for the two lines below?

\begin{align*}
x - 2y &= -2 \\
y &= -6x + 40
\end{align*}

A. \(\frac{-82}{13} \)
B. \(\frac{-42}{13} \)
C. 6
D. 7

2. What is the y-coordinate of the point of intersection for the two lines below?

\begin{align*}
-6x + 7y &= 20 \\
2x - 3y &= 4
\end{align*}

A. \(-22\)
B. \(-16\)
C. 16
D. 22

3. How many solutions does the system of equations have?

\begin{align*}
x + y &= 4 \\
-4x - 2y &= -8
\end{align*}

A. no solution
B. one solution
C. two solutions
D. infinitely many solutions

4. How many solutions does the system of equations have?

\begin{align*}
-2x + 4y &= 1 \\
3x - 6y &= 9
\end{align*}

A. no solution
B. one solution
C. two solutions
D. infinitely many solutions

5. Which ordered pair is in the solution set for the system of inequalities shown below?

\begin{align*}
2x - y &< 3 \\
x + 2y &> -1
\end{align*}

A. \((-2, -1)\)
B. \((0, 1)\)
C. \((1, -2)\)
D. \((6, 1)\)
6. Which system of inequalities is shown in the graph below? (Assume each tick mark is one unit.)

A. \[
\begin{align*}
y &\geq 1 \\
y &\geq -2x + 2
\end{align*}
\]
B. \[
\begin{align*}
y &\geq 1 \\
y &\geq -2x - 2
\end{align*}
\]
C. \[
\begin{align*}
y &\geq 1 \\
y &\geq 2x + 2
\end{align*}
\]
D. \[
\begin{align*}
y &\geq 1 \\
y &\geq 2x - 2
\end{align*}
\]

7. Yolanda has 30 coins worth $2.35. She has only nickels and dimes. How many dimes does Yolanda have?

A. 15
B. 17
C. 19
D. 23

8. Karla is 3 times as old as Lauren. In 4 years, the sum of their ages will be 56. Which system of linear equations can be used to find the age of Karla \((k)\) and Lauren \((l)\)?

A. \[
\begin{align*}
k & = 3l \\
4k + 4l & = 56
\end{align*}
\]
B. \[
\begin{align*}
l & = 3k \\
4l + 4k & = 56
\end{align*}
\]
C. \[
\begin{align*}
k & = 3l \\
(k + 4) + (l + 4) & = 56
\end{align*}
\]
D. \[
\begin{align*}
l & = 3k \\
l + (k + 4) & = 56
\end{align*}
\]

9. Evaluate \((x^3)^3\) when \(x = 3\).

A. 18
B. 27
C. 243
D. 729

10. Determine the value of \(2^3 \cdot 2^4\).

A. 48
B. 64
C. 96
D. 128

11. What is \(1.57 \times 10^4\) in standard (decimal) form?

A. 0.0000157
B. 0.000157
C. 15,700
D. 1,570,000
12. Divide: \(\frac{6.0 \times 10^{-5}}{3.0 \times 10^{-3}} \). What is the quotient in scientific notation?
 A. \(0.2 \times 10^{-8} \)
 B. \(0.2 \times 10^{-2} \)
 C. \(2.0 \times 10^{-8} \)
 D. \(2.0 \times 10^{-2} \)

13. If \(\frac{x^y}{x^3} = x^6 \), what is the value of \(y \)?
 A. 2
 B. 3
 C. 9
 D. 18

14. Which expression is equivalent to \((a^2b^3)(3a^3bc^4)^2 \)?
 A. \(6a^{12}b^2c^{24} \)
 B. \(6a^{8}b^{3}c^{11} \)
 C. \(9a^{12}b^2c^{24} \)
 D. \(9a^{8}b^{3}c^{11} \)

15. Simplify the following expression using only positive exponents.
 \((-10a)^0 \cdot x^{-2} \)
 A. \(\frac{1}{x^2} \)
 B. \(-\frac{10a}{x^2} \)
 C. \(10ax^2 \)
 D. \(-x^2 \)

16. Evaluate the expression \(2^{-3} \cdot 2^6 \cdot 2 \).
 A. 2
 B. 8
 C. 16
 D. 32

17. Which statement is the best approximation of \(\sqrt{85} \)?
 A. It lies between 9 and 10 and is closer to 10 than it is to 9.
 B. It lies between 9 and 10 and is closer to 9 than it is to 10.
 C. It lies between 81 and 100 and is closer to 100 than it is to 81.
 D. It lies between 81 and 100 and is closer to 81 than it is to 100.

18. What is the simplest form of the radical expression \(-\sqrt{\frac{64}{400}} \)?
 A. \(-\frac{2}{5} \)
 B. \(-\frac{8}{20} \)
 C. \(-\frac{7}{5} \)
 D. \(-\frac{8}{20} \)
Algebra I Semester 2 Practice Exam

19. Simplify the radical \(\sqrt{108} \).
 A. \(2\sqrt{3} \)
 B. \(2\sqrt{6} \)
 C. \(3\sqrt{3} \)
 D. \(6\sqrt{3} \)

20. Simplify the product \(\sqrt{18} \cdot \sqrt{3} \).
 A. \(2\sqrt{3} \)
 B. \(2\sqrt{6} \)
 C. \(3\sqrt{3} \)
 D. \(3\sqrt{6} \)

21. The length of a rectangular television is 20 inches. The diagonal measures 25 inches. Which expression below can be used to find the width, in inches, of the television?
 A. \(\sqrt{25^2 - 20^2} \) inches
 B. \(\sqrt{20^2 + 25^2} \) inches
 C. \((20^2 + 25^2) \) inches
 D. \((25^2 - 20^2) \) inches

22. Use the converse of the Pythagorean Theorem to determine which 3 numbers could represent the sides of a right triangle.
 A. 2, 4, 5
 B. 3, 3, 5
 C. 4, 4, 5
 D. 6, 8, 10

23. Find the area of the figure. Give the exact answer in simplest form.

 \[\text{Area} = \frac{1}{2} \cdot 2\sqrt{12} \cdot \sqrt{10} \]
 A. \(\sqrt{30} \)
 B. \(\sqrt{120} \)
 C. \(2\sqrt{30} \)
 D. \(10\sqrt{30} \)

24. Which expression represents the perimeter of the rectangle?
 \[\text{Perimeter} = 2x + 3 + 4x + 5 \]
 A. \(6x + 8 \)
 B. \(6x + 16 \)
 C. \(12x + 8 \)
 D. \(12x + 16 \)
25. The function \(g(x) \) is the amount of money Shawn has in the bank at the beginning of the month. The function \(f(x) \) is the amount of money withdrawn from the account during the month. Which expression represents the amount of money left at the end of the month?

\[
\begin{align*}
f(x) &= x^2 - 3x + 12 \\
g(x) &= 6x^2 - 2x + 20
\end{align*}
\]

A. \(5x^2 - 5x + 8 \)
B. \(5x^2 + x + 8 \)
C. \(-5x^2 - x - 8 \)
D. \(-5x^2 - 5x + 8 \)

26. Which expression below represents the product of \((5x + 6)\) and \((2x - 5)\)?

A. \(10x^2 - 37x - 30 \)
B. \(10x^2 - 13x - 30 \)
C. \(10x^2 + 13x - 30 \)
D. \(10x^2 + 37x - 30 \)

27. Multiply the polynomials:

\[(2x - 1)(4x^2 + 5x - 2)\]

A. \(8x^3 + 6x^2 - 9x + 2 \)
B. \(8x^3 + 6x^2 - x + 2 \)
C. \(8x^3 - 14x^2 - 9x + 2 \)
D. \(8x^3 - 14x^2 - x + 2 \)

28. Expand the expression: \((2x - 7)^2\)

A. \(4x^2 - 49 \)
B. \(4x^2 + 49 \)
C. \(4x^2 - 28x + 49 \)
D. \(4x^2 + 28x + 49 \)

29. Which of the following is a factor of \(3x^2 + 16x - 12\)?

A. \((3x - 2) \)
B. \((3x - 3) \)
C. \((3x - 4) \)
D. \((3x - 5) \)

30. How many \(x\)-intercepts does the graph of \(y = 9x^2 + 30x + 25 \) have?

A. 0
B. 1
C. 2
D. 3
31. Which of the following are true statements about the graph of \(y = -3x^2 + 12x - 6 \)?

 I. Opens up
 II. Opens down
 III. Axis of symmetry \(x = -2 \)
 IV. Axis of symmetry \(x = 2 \)

A. I and III only
B. I and IV only
C. II and III only
D. II and IV only

32. Find the vertex of the parabola given by the equation below:
 \[y = -3x^2 - 6x + 4 \]

A. \((-1, 7)\)
B. \((-1, -5)\)
C. \((2, -20)\)
D. \((-3, -5)\)

33. Determine the domain and range of the function \(y = (x - 1)(x + 3) \) shown in the graph below. (Assume each tick mark represents one unit.)

A. Domain: \(-3 \leq x \leq 1\)
 Range: all real numbers
B. Domain: \(-1 \leq x \leq 3\)
 Range: all real numbers
C. Domain: all real numbers
 Range: \(y \leq -4 \)
D. Domain: all real numbers
 Range: \(y \geq -4 \)
34. Which of the following is the correct use of the quadratic formula to find the solution set of the equation $3x^2 + 4x = -8$?

A. \[\frac{4 - \sqrt{(4)^2 - 4(3)(8)}}{2(3)}, \frac{4 + \sqrt{(4)^2 - 4(3)(8)}}{2(3)} \]

B. \[\frac{4 - \sqrt{(4)^2 - 4(3)(-8)}}{2(3)}, \frac{4 + \sqrt{(4)^2 - 4(3)(-8)}}{2(3)} \]

C. \[\frac{-4 - \sqrt{(4)^2 - 4(3)(8)}}{2(3)}, \frac{-4 + \sqrt{(4)^2 - 4(3)(8)}}{2(3)} \]

D. \[\frac{-4 - \sqrt{(4)^2 - 4(3)(-8)}}{2(3)}, \frac{-4 + \sqrt{(4)^2 - 4(3)(-8)}}{2(3)} \]

35. What is the solution set for the equation below?

\[x^2 - 6x + 9 = 16 \]

A. \{-7, 1\}

B. \{-1, 7\}

C. \{3, 4\}

D. \{3\}

36. What are the roots (solutions) of the equation $x^2 - 6x = -3$?

A. \{3 - \sqrt{6}, 3 + \sqrt{6}\}

B. \{-3 - \sqrt{6}, -3 + \sqrt{6}\}

C. \{3 - 2\sqrt{6}, 3 + 2\sqrt{6}\}

D. \{-3 - 2\sqrt{6}, -3 + 2\sqrt{6}\}

37. Which of the following equations has roots of -3 and 1?

A. \((x - 3)(x + 1) = 0\)

B. \((x - 3)(x - 1) = 0\)

C. \((x + 3)(x + 1) = 0\)

D. \((x + 3)(x - 1) = 0\)
38. Solve the equation: $9x^2 - 16 = 0$

A. $\left\{ \frac{4}{3}, \frac{4}{9} \right\}$

B. $\left\{ -\frac{16}{9}, -\frac{16}{9} \right\}$

C. $\left\{ \frac{4}{3} \right\}$

D. $\left\{ \frac{16}{9} \right\}$

39. Which of the following is the graph of $y = x^2 + 3x + 2$? (Assume each tick mark represents one unit.)

A.

B.

C.

D.
40. Which equation best represents the graph below? (Assume each tick mark represents one unit.)

A. \(y = x^2 - 6x + 2 \)
B. \(y = -x^2 + 6x - 2 \)
C. \(y = x^2 - 3x + 1 \)
D. \(y = -x^2 + 3x - 1 \)

41. The area of a right triangle is represented by \(\frac{1}{2}(x^2 + 9x - 36) \). Which pair of expressions could represent the base and height of the right triangle?

A. \(x + 6, x - 6 \)
B. \(x + 9, x - 4 \)
C. \(x + 12, x - 3 \)
D. \(x + 18, x - 2 \)

42. Simplify the rational expression:
\[
\frac{9x^3 - 27x^2}{x^2 - 8x + 15}
\]

A. \(-\frac{9x^2}{5} \)
B. \(\frac{9x^2}{x - 5} \)
C. \(\frac{9x - 27}{15 - 8x} \)
D. \(\frac{3x^2(3x - 9)}{(x - 5)(x - 3)} \)

43. Which answer shows a simplified form of the expression below?
\[
\frac{12x^2}{y^3} + \frac{3x^4}{y^7}
\]

A. \(\frac{36x^7}{y^{10}} \)
B. \(\frac{4x^7}{y^{10}} \)
C. \(\frac{36y^4}{x^3} \)
D. \(\frac{4y^4}{x^3} \)
44. What is \(\frac{x^2 - 3}{x + 4} + \frac{2x - 5}{x + 4} \) in simplest form?

A. \(x^2 + 2x - 8 \)
B. \(x - 2 \)
C. \(\frac{2x^2 - 8}{x + 4} \)
D. \(\frac{x - 2}{x + 4} \)

45. What is \(\frac{x - 5}{x + 2} - \frac{3}{x - 2} \) in simplified form?

A. \(\frac{x^2 - 10x + 16}{x^2 - 4} \)
B. \(\frac{x^2 - 10x + 4}{x^2 - 4} \)
C. \(\frac{x^2 - 4x + 16}{x^2 - 4} \)
D. \(\frac{x^2 - 4x + 4}{x^2 - 4} \)

46. For what values of \(x \) is the rational expression \(\frac{x^2 - 10x + 24}{x^2 - 36} \) undefined?

I. \(x = -6 \)
II. \(x = 4 \)
III. \(x = 6 \)

A. I only
B. III only
C. I and III only
D. I, II, and III

47. Simplify the quotient:
\[
\frac{x^2 - 6x + 9}{x^2 + 5x + 6} \div \frac{4x - 12}{x^2 + 2x}
\]

A. \(\frac{-3}{4(x - 3)} \)
B. \(\frac{x}{4} \)
C. \(\frac{x(x - 3)}{4(x + 3)} \)
D. \(\frac{1}{4x} \)

48. Eighteen is what percent of 30?

A. 5.4 %
B. 24.6 %
C. 55 %
D. 60 %

49. Solve the equation below for \(x \):
\[
\frac{2x + 5}{4} = \frac{x + 6}{10}
\]

A. -20
B. \(-\frac{13}{8} \)
C. -\(\frac{1}{2} \)
D. 1
50. Which solution set represents the values of x that satisfy the equation below?

$$\frac{x + 3}{2} = \frac{7}{x + 8}$$

A. $\{-10, -1\}$
B. $\{-8, -3\}$
C. $\{1, 10\}$
D. $\{3, 8\}$
1. Simplify the following expression. Justify each step with the applicable property of exponents. Express your answer with no negative exponents.

\[
\frac{64a^7b^{-5}}{2a^4b^6} \cdot \frac{6a^4b^7}{-4a^5}
\]

2. A rectangular patio has length \(f(x) \) feet and width \(g(x) \) feet, where \(f(x) = 3x + 7 \) and \(g(x) = x + 5 \):

 \[
 \begin{array}{c}
 f(x) \\
 g(x)
 \end{array}
 \]

 A. If the patio’s perimeter were 88 feet, what would be the value of \(x \)?

 B. If the patio’s area were 11 square feet, what would be the value of \(x \)?
3. Use the equation $y = -x^2 + 8x - 15$ to answer the following questions:

A. Find the x-intercepts.

B. Find the vertex.

C. Sketch the graph.

D. State the domain and range.
<table>
<thead>
<tr>
<th>#</th>
<th>Objective</th>
<th>Syllabus Objective</th>
<th>NV State Standard</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>• Simplify algebraic expressions by applying the properties of exponents.</td>
<td>7.3</td>
<td>2.12.3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>• Add, subtract, multiply, and factor polynomials connecting the arithmetic and algebraic processes.</td>
<td>9.1</td>
<td>2.12.3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>• Graph quadratic equations and find possible solutions to those equations using coordinate geometry.</td>
<td>9.5</td>
<td>2.12.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Solve systems of equations using graphic and algebraic techniques to include substitution, linear combination, and graphing.</td>
<td>6.1</td>
<td>2.7.5 2.12.5</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>Solve systems of equations using graphic and algebraic techniques to include substitution, linear combination, and graphing.</td>
<td>6.1</td>
<td>2.7.5 2.12.5</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>Identify the number of solutions to a system of equations.</td>
<td>6.2</td>
<td>2.12.5</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>Identify the number of solutions to a system of equations.</td>
<td>6.2</td>
<td>2.12.5</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>Solve systems of inequalities using graphic and algebraic techniques.</td>
<td>6.3</td>
<td>2.12.5</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>Solve systems of inequalities using graphic and algebraic techniques.</td>
<td>6.3</td>
<td>2.12.5</td>
<td>A</td>
</tr>
<tr>
<td>7</td>
<td>Solve practical problems using systems of equations and inequalities with a variety of methods, including discrete methods (with and without technology).</td>
<td>6.4</td>
<td>2.12.5</td>
<td>B</td>
</tr>
<tr>
<td>8</td>
<td>Solve practical problems using systems of equations and inequalities with a variety of methods, including discrete methods (with and without technology).</td>
<td>6.4</td>
<td>2.12.5</td>
<td>C</td>
</tr>
<tr>
<td>9</td>
<td>Determine a value of an exponential expression using a variety of methods.</td>
<td>7.1</td>
<td>1.12.6</td>
<td>D</td>
</tr>
<tr>
<td>10</td>
<td>Determine a value of an exponential expression using a variety of methods.</td>
<td>7.1</td>
<td>1.12.6</td>
<td>D</td>
</tr>
<tr>
<td>11</td>
<td>Express numbers using scientific notation in mathematical and practical situations.</td>
<td>7.2</td>
<td>1.8.1</td>
<td>C</td>
</tr>
<tr>
<td>12</td>
<td>Express numbers using scientific notation in mathematical and practical situations.</td>
<td>7.2</td>
<td>1.8.1</td>
<td>D</td>
</tr>
<tr>
<td>13</td>
<td>Simplify algebraic expressions by applying the properties of exponents.</td>
<td>7.3</td>
<td>2.12.3</td>
<td>C</td>
</tr>
<tr>
<td>14</td>
<td>Simplify algebraic expressions by applying the properties of exponents.</td>
<td>7.3</td>
<td>2.12.3</td>
<td>D</td>
</tr>
<tr>
<td>15</td>
<td>Simplify expressions containing negative and zero exponents.</td>
<td>7.4</td>
<td>2.12.3</td>
<td>A</td>
</tr>
<tr>
<td>16</td>
<td>Simplify expressions containing negative and zero exponents.</td>
<td>7.4</td>
<td>2.12.3</td>
<td>C</td>
</tr>
<tr>
<td>#</td>
<td>Objective</td>
<td>Syllabus Objective</td>
<td>NV State Standard</td>
<td>Key</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>--------------------</td>
<td>------------------</td>
<td>-----</td>
</tr>
<tr>
<td>17</td>
<td>Determine an approximate value of a radical expression using a variety of methods.</td>
<td>8.1</td>
<td>1.8.3 1.12.6</td>
<td>B</td>
</tr>
<tr>
<td>18</td>
<td>Simplify and evaluate algebraic expressions with radicals.</td>
<td>8.2</td>
<td>2.12.3</td>
<td>A</td>
</tr>
<tr>
<td>19</td>
<td>Simplify and evaluate algebraic expressions with radicals.</td>
<td>8.2</td>
<td>2.12.3</td>
<td>D</td>
</tr>
<tr>
<td>20</td>
<td>Simplify and evaluate algebraic expressions with radicals.</td>
<td>8.2</td>
<td>2.12.3</td>
<td>D</td>
</tr>
<tr>
<td>21</td>
<td>Apply the Pythagorean Theorem and its converse in mathematical and practical situations (with and without technology).</td>
<td>8.3</td>
<td>4.12.7</td>
<td>A</td>
</tr>
<tr>
<td>22</td>
<td>Apply the Pythagorean Theorem and its converse in mathematical and practical situations (with and without technology).</td>
<td>8.3</td>
<td>4.12.7</td>
<td>D</td>
</tr>
<tr>
<td>23</td>
<td>Solve practical problems using radicals.</td>
<td>8.4</td>
<td>1.12.7</td>
<td>A</td>
</tr>
<tr>
<td>24</td>
<td>Add, subtract, multiply, and factor polynomials connecting the arithmetic and algebraic processes.</td>
<td>9.1</td>
<td>2.12.3</td>
<td>D</td>
</tr>
<tr>
<td>25</td>
<td>Add, subtract, multiply, and factor polynomials connecting the arithmetic and algebraic processes.</td>
<td>9.1</td>
<td>2.12.3</td>
<td>B</td>
</tr>
<tr>
<td>26</td>
<td>Add, subtract, multiply, and factor polynomials connecting the arithmetic and algebraic processes.</td>
<td>9.1</td>
<td>2.12.3</td>
<td>B</td>
</tr>
<tr>
<td>27</td>
<td>Add, subtract, multiply, and factor polynomials connecting the arithmetic and algebraic processes.</td>
<td>9.1</td>
<td>2.12.3</td>
<td>A</td>
</tr>
<tr>
<td>28</td>
<td>Add, subtract, multiply, and factor polynomials connecting the arithmetic and algebraic processes.</td>
<td>9.1</td>
<td>2.12.3</td>
<td>C</td>
</tr>
<tr>
<td>29</td>
<td>Add, subtract, multiply, and factor polynomials connecting the arithmetic and algebraic processes.</td>
<td>9.1</td>
<td>2.12.3</td>
<td>A</td>
</tr>
<tr>
<td>30</td>
<td>Compare characteristics of a given family of quadratic functions.</td>
<td>9.2</td>
<td>2.12.6</td>
<td>B</td>
</tr>
<tr>
<td>31</td>
<td>Compare characteristics of a given family of quadratic functions.</td>
<td>9.2</td>
<td>2.12.6</td>
<td>D</td>
</tr>
<tr>
<td>32</td>
<td>Compare characteristics of a given family of quadratic functions.</td>
<td>9.2</td>
<td>2.12.6</td>
<td>A</td>
</tr>
<tr>
<td>33</td>
<td>Determine the domain and range of quadratic equations algebraically and graphically.</td>
<td>9.3</td>
<td>2.12.4</td>
<td>D</td>
</tr>
<tr>
<td>34</td>
<td>Solve quadratic equations using graphic and algebraic techniques to include the quadratic formula, square roots, factoring, completing the square, and graphing.</td>
<td>9.4</td>
<td>2.12.6</td>
<td>C</td>
</tr>
<tr>
<td>#</td>
<td>Objective</td>
<td>Syllabus Objective</td>
<td>NV State Standard</td>
<td>Key</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--------------------</td>
<td>-------------------</td>
<td>-----</td>
</tr>
<tr>
<td>35</td>
<td>Solve quadratic equations using graphic and algebraic techniques to include the quadratic formula, square roots, factoring, completing the square, and graphing.</td>
<td>9.4</td>
<td>2.12.6</td>
<td>B</td>
</tr>
<tr>
<td>36</td>
<td>Solve quadratic equations using graphic and algebraic techniques to include the quadratic formula, square roots, factoring, completing the square, and graphing.</td>
<td>9.4</td>
<td>2.12.6</td>
<td>A</td>
</tr>
<tr>
<td>37</td>
<td>Solve quadratic equations using graphic and algebraic techniques to include the quadratic formula, square roots, factoring, completing the square, and graphing.</td>
<td>9.4</td>
<td>2.12.6</td>
<td>D</td>
</tr>
<tr>
<td>38</td>
<td>Solve quadratic equations using graphic and algebraic techniques to include the quadratic formula, square roots, factoring, completing the square, and graphing.</td>
<td>9.4</td>
<td>2.12.6</td>
<td>A</td>
</tr>
<tr>
<td>39</td>
<td>Graph quadratic equations and find possible solutions to those equations using coordinate geometry.</td>
<td>9.5</td>
<td>2.12.6</td>
<td>D</td>
</tr>
<tr>
<td>40</td>
<td>Graph quadratic equations and find possible solutions to those equations using coordinate geometry.</td>
<td>9.5</td>
<td>2.12.6</td>
<td>C</td>
</tr>
<tr>
<td>41</td>
<td>Solve practical problems involving quadratic equations with a variety of methods, including discrete methods.</td>
<td>9.6</td>
<td>2.12.6</td>
<td>C</td>
</tr>
<tr>
<td>42</td>
<td>Simplify rational expressions with like and unlike denominators.</td>
<td>10.1</td>
<td>2.12.3</td>
<td>B</td>
</tr>
<tr>
<td>43</td>
<td>Simplify rational expressions with like and unlike denominators.</td>
<td>10.1</td>
<td>2.12.3</td>
<td>D</td>
</tr>
<tr>
<td>44</td>
<td>Simplify rational expressions with like and unlike denominators.</td>
<td>10.1</td>
<td>2.12.3</td>
<td>B</td>
</tr>
<tr>
<td>45</td>
<td>Simplify rational expressions with like and unlike denominators.</td>
<td>10.1</td>
<td>2.12.3</td>
<td>B</td>
</tr>
<tr>
<td>46</td>
<td>Simplify rational expressions with like and unlike denominators.</td>
<td>10.1</td>
<td>2.12.3</td>
<td>C</td>
</tr>
<tr>
<td>47</td>
<td>Simplify rational expressions with like and unlike denominators.</td>
<td>10.1</td>
<td>2.12.3</td>
<td>C</td>
</tr>
<tr>
<td>48</td>
<td>Solve rational equations.</td>
<td>10.2</td>
<td>2.12.4</td>
<td>D</td>
</tr>
<tr>
<td>49</td>
<td>Solve rational equations.</td>
<td>10.2</td>
<td>2.12.4</td>
<td>B</td>
</tr>
<tr>
<td>50</td>
<td>Solve rational equations.</td>
<td>10.2</td>
<td>2.12.4</td>
<td>A</td>
</tr>
</tbody>
</table>